About the Journal: Aims and Scope

Official Title
Journal of Diagnostics and Treatment of Oral and Maxillofacial Pathology

Standard Abbreviation: ISO 4

Acronym
JDTOMP

International Standard Serial Numbers (ISSNs)
Print ISSN 2519-2086 | Online ISSN 2522-1965

Aims & Scope
This is a monthly peer-reviewed oral and maxillofacial surgery journal focused on: Microvascular and jaw reconstructive surgery, dental implants, salivary gland tumors/diseases, TMJ lesions, virtual surgical planning, implementation of ultrasonography into the practice of oral and maxillofacial surgeons.

Editorial Board (EB) Composition
• EB shows significant geographic diversity representing 28 opinion leaders from 13 countries: Brazil, Canada, Colombia, Greece, Hong Kong (SAR, China), India, Israel, Italy, Slovak Republic, Spain, Ukraine, United Arab Emirates, and United States.
• The majority of the EB Members have a discernible publication history in Scopus, Web of Science, and journals with a high impact factor.
• The publication records of all EB members are consistent with the stated scope and published content of the journal.
• The journal has a several full-time professional editors.
• Gender distribution of the editors: 10.71% women, 89.28% men, 0% non-binary/other, and 0% prefer not to disclose.

Frequency
12 print/online issues a year (from January 2020)

Publication History
2017: 4 issues a year
2018: 4 issues a year
2019: 10 issues a year
From 2020: 12 issues a year

Publishing Model
Journal of Diagnostics and Treatment of Oral and Maxillofacial Pathology is a fully open access and peer-reviewed publication.

Type of Peer Review
The journal employs “double blind” reviewing.

Article Publishing Charge (APC)
During hard times of Covid-19 pandemic our journal trying to support authors by reducing the APC by 50%. And by the end of December 2021 the APC will be 100 USD and 50 USD (excluding taxes) depending on the article’s type. Details at website: dtjournal.org.

13 Types of Articles Currently Published by the Journal
Editorials/Guest Editorials/Post Scriptum Editorials, Images, Case Reports/Case Series, Original Articles, Review Articles, Discussions, Paper Scans (synonym: Review of Articles, Literature Scan), Book Scans (synonym: Book Reviews), Letters to the Editor (synonym: Letters), and Viewpoints.

State Registration: Ministry of Justice of Ukraine
Registration: Jul 28, 2016 (Certificate: KB № 22251-12151 P)
Re-registration: May 21, 2019 (Certificate: KB № 23999-13839 IIP)
Re-registration: Aug 10, 2021 (Certificate: KB № 24951-14891 IIP)

Co-Founders
1. Shupyk National Healthcare University of Ukraine (formerly known as Shupyk National Medical Academy of Postgraduate Education).
2. Private Higher Educational Establishment “Kyiv Medical University.”

Publisher
OMF Publishing, LLC is an academic publisher focused on medical and linguistic sciences.
Address: 13-A Simferopolska Street, Office 121, Kyiv 02096, Ukraine.

Crossref Membership
OMF Publishing, LLC is a member of Publishers International Linking Association, Inc. which doing business as a Crossref. OMF Publishing’s active membership: From February 2017 to present.

Official Journal of the Association
Ukrainian Association for Maxillofacial and Oral Surgeons
Ukrainian Association for Maxillofacial and Oral Surgeons (UAMOS)
Address: 4-A Profesora Pidvysotskoho Street, Kyiv 01103, Ukraine.
Tel., fax: +38 044 528 35 17.
Website: uamos.org.

Subscription Index
In Ukraine: 60077 | In Donetsk/Luhansk Regions: 88263. See page A5.

© 2021 OMF PUBLISHING, LLC
Composition:

active substance: benzydamine hydrochloride;
100 mL of solution contain benzydamine hydrochloride 0.15 g;

excipients: ethanol 96%, glycerol, methyl parahydroxybenzoate (E 218), flavor (menthol), saccharin, sodium hydrocarbonate, Polysorbate 20, Quinoline Yellow (E 104), Patent Blue V (E 131), purified water.

Dosage form. Oromucosal solution.

Basic physical and chemical properties: a clear green liquid with a typical mint flavor.

Pharmacotherapeutic group. Dental preparations. Other agents for local oral treatment.

ATC code: A01AD02.

Pharmacological properties.

Pharmacodynamics.

Benzydamine is a non-steroidal anti-inflammatory drug (NSAID) with analgesic and antiexudative properties.

Clinical studies have shown that benzydamine is effective in the relief of symptoms accompanying localized irritation conditions of the oral cavity and pharynx. Moreover, benzydamine has anti-inflammatory and local analgesic properties, and also exerts a local anesthetic effect on the oral mucosa.

Pharmacokinetics.

Absorption through the oral and pharyngeal mucosa has been proven by the presence of measurable quantities of benzydamine in human plasma. However, they are insufficient to produce any systemic pharmacological effect. The excretion occurs mainly in urine, mostly as inactive metabolites or conjugated compounds.

When applied locally, benzydamine has been shown to cumulate in inflamed tissues in an effective concentration due to its ability to permeate through the mucous membrane.

Clinical particulars.

Indications.

Symptomatic treatment of oropharyngeal irritation and inflammation; to relieve pain caused by gingivitis, stomatitis, pharyngitis; in dentistry after tooth extraction or as a preventive measure.

Contraindications.

Hypersensitivity to the active substance or to any other ingredients of the product.

Interaction with other medicinal products and other types of interaction.

No drug interaction studies have been performed.

Warnings and precautions.

If sensitivity develops with long-term use, the treatment should be discontinued and a doctor should be consulted to get appropriate treatment.

In some patients, buccal/pharyngeal ulceration may be caused by severe pathological processes. Therefore, the patients, whose symptoms worsen or do not improve within 3 days or who appear febrile or develop other symptoms, should seek advice of a physician or a dentist, as appropriate.

Benzydamine is not recommended for use in patients hypersensitive to acetylsalicylic acid or other non-steroidal anti-inflammatory drugs (NSAIDs).

The product can trigger bronchospasm in patients suffering from or with a history of asthma. Such patients should be warned of this.

For athletes: the use of medicinal products containing ethyl alcohol might result in positive antidoping tests considering the limits established by some sports federations.
Use during pregnancy or breast-feeding

No adequate data are currently available on the use of benzydamine in pregnant and breastfeeding women. Excretion of the product into breast milk has not been studied. The findings of animal studies are insufficient to make any conclusions about the effects of this product during pregnancy and lactation.

The potential risk for humans is unknown.

TANTUM VERDE should not be used during pregnancy or breast-feeding.

Effects on reaction time when driving or using machines

When used in recommended doses, the product does not produce any effect on the ability to drive and operate machinery.

Method of administration and doses.

Pour 15 mL of TANTUM VERDE solution from the bottle into the measuring cup and gargle with undiluted or diluted product (15 mL of the measured solution can be diluted with 15 mL of water). Gargle 2 or 3 times daily. Do not exceed the recommended dose.

Children.

The product should not be used in children under 12 years due to a possibility of ingestion of the solution when gargling.

Overdosage.

No overdose has been reported with benzydamine when used locally. However, it is known that benzydamine, when ingested in high doses (hundreds times higher than those possible with this dosage form), especially in children, can cause agitation, convulsions, tremor, nausea, increased sweating, ataxia, and vomiting. Such acute overdose requires immediate gastric lavage, treatment of fluid/salt imbalance, symptomatic treatment, and adequate hydration.

Adverse reactions.

Within each frequency group, the undesirable effects are presented in order of their decreasing seriousness.

Adverse reactions are classified according to their frequency: very common (≥ 1/10); common (≥ 1/100 to <1/10); uncommon (≥ 1/1,000 to <1/100); rare (≥ 1/10,000 to <1/1,000); very rare (<1/10,000); frequency unknown (cannot be estimated from the available data).

Gastrointestinal disorders: rare – burning mouth, dry mouth; unknown – oral hypesthesia, nausea, vomiting, tongue edema and discoloration, dysgeusia.

Immune system disorders: rare – hypersensitivity reaction, unknown - anaphylactic reaction.

Respiratory, thoracic and mediastinal disorders: very rare – laryngospasm; unknown – bronchospasm.

Skin and subcutaneous tissue disorders: uncommon – photosensitivity; very rare – angioedema; unknown – rash, pruritus, urticaria.

Nervous system disorders: unknown – dizziness, headache.

TANTUM VERDE contains methyl parahydroxybenzoate, which can cause allergic reactions (including delayed-type reactions).

Shelf life. 4 years.

Storage conditions.

Do not store above 25°C. Keep out of reach of children.

Packaging.

120 mL of solution in a bottle with a measuring cup; 1 bottle per cardboard box.

Dispensing category.

Over-the-counter medicinal product.

Manufacturer.

Location of the manufacturer and its business address.
Via Vecchia del Pinocchio, 22 – 60100 Ancona (AN), Italy.

Date of the last revision of the text.

September 26, 2018.

Information leaflet is APPROVED by Order of the Ministry of Health of Ukraine

No. 636 dated 01.10.2015

Registration Certificate
No. UA/3920/01/01
Our Supporters

FIGURE. Evangelos G. Kilipiris, MD, DMD from the National Institute of Children’s Diseases and Faculty of Medicine at Comenius University, Bratislava, Slovak Republic. A kind support of Dr. Kilipiris during the 5 years at the position of Director, Journal Development Department helped our journal to move forward and to evolve. An honorary plaque was presented to him on behalf of the Chief Editor with words “To a Founding Director, Author of Multiple Articles and Reviews, Great Thanks and Appreciation.” Photo was taken on November 23, 2021.
CASE 125
Obstructive Submandibular Sialadenitis Complicated with Severe Neck Phlegmon: Transcutaneous Removal of Sialolith with a Flow of Pus: Literature Review of Extraoral Complications
Lilia A. Savchuk & Ievgen I. Fesenko
Obstructive Submandibular Sialadenitis Complicated with Severe Neck Phlegmon: Transcutaneous Removal of Sialolith with a Flow of Pus: Literature Review of Extraoral Complications

Lilia A. Savchuk & Ievgen I. Fesenko

CASE

Obstructive Submandibular Sialadenitis Complicated with Severe Neck Phlegmon: Transcutaneous Removal of Sialolith with a Flow of Pus: Literature Review of Extraoral Complications

Lilia A. Savchuk & Ievgen I. Fesenko

SUMMARY

Sialolithiasis, as the most common reason (60–85 percent) of obstructive salivary gland disease, in the rare cases, may be complicated by soft tissues abscess or fistula. The purpose of this report is to present a rare case of submandibular gland sialolithiasis complicated with severe neck phlegmon in a 47-year-old Caucasian male. Ultrasonography and transcutaneous removal of sialolith upon the purulent locus lancing are highlighted. Our literature review based on the existed ones with a total 24 complication cases is presented. Wakoh et al’s classification of submandibular gland sialolith-associated fistulas types is analyzed. The ultrasound imaging is still underestimated and not adequately popularized among head and neck and oral and maxillofacial surgeons. Presented case and published reports show the usefulness of this constantly developing diagnostic technique in a combination with knowledge of possible extraoral purulent complications and its management.
INTRODUCTION

Sialolithiasis, as the most common reason (60–85 percent) of obstructive salivary gland disease, in the rare cases, may be complicated by soft tissues abscess, or/and fistula. A clinical study by Kishore Kumar et al (2012) of the 200 cases of cutaneous sinuses revealed that only in 0.5 percent of cases was noted cutaneous fistula as a result of submandibular gland calculus. Such fistula usually is named by authors as orocutaneous or sialo-cutaneous fistula.

According to our literature search, submandibular gland calculus-associated abscesses/phlegmons are even rarer comparing with sialo-cutaneous fistulae. Purulent floor of the mouth processes as a complication of obstructive salivary stone usually were diagnosed by multi-slice computed tomography (MSCT). Despite ultrasound (US) are widely described as a diagnostic tool for submandibular sialolithiasis, its application in case of calculus-associated cervical fistulae and abscess/phlegmon to our knowledge is presented in very limited publications.

The purpose of this report is to present a rare case of submandibular gland sialolithiasis complicated with severe neck phlegmon in a 47-year-old male. Ultrasound and transcutaneous removal of sialolith upon the purulent locus lancing are highlighted. Our own literature review based on the existed ones with a total 24 complication cases is presented.

CASE

A 47-year-old Caucasian gentleman was referred to the Kyiv Regional Clinical Hospital with a left neck and submandibular swelling (Fig 1), fever, difficulty of swallowing. The complaints had been initiated with salivary colics several weeks before. Previously, during the last years, patient noted a painful chewing-associated submandibular swelling at the left side.

US was performed by an experienced doctor of ultrasound diagnostics (L.A.S., her experience – 31 years). Submandibular and neck regions were examined bilaterally according to the protocol (ie, swelled and healthy side). Using linear transducer (12-5MHz) in a longitudinal submandibular position, the gray scale US (also known as B-mode [brightness mode]) showed hyperechoic semilunar structure (ie, sialolith, measured 0.76 × 0.78 cm) with an artifact of acoustic shadowing behind (Fig 2). Also, in this left submandibular region, the submandibular gland with a hypoechoic parenchyma and the collection of hypoechoic heterogenic content (ie, pus) were visualized. The diagnosis of obstructive sialadenitis caused by sialolith and complicated with submandibular and left neck phlegmon was established.

The phlegmon lancing was done under the local infiltration anesthesia using 8.0 ml of 4 percent Ultracain® D-S solution (Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany) mixed with 12.0 ml of 0.9% saline solution in a 20-ml syringe. Intravenous sedation was done by anesthesiologist’s team. An oblique 3.5-cm incision was planned and done inside the prominent upper neck skin crease (Fig 1C). A 1.2-cm salivary calculus (ie, sialolith) was removed with a flow of pus (~22 ml) upon the finger examination (ie, revision) of the purulent wound (Fig 3). Tubular double drainage was installed after rinsing with an antiseptic solution. Post-operative period associated with infusion and antibacterial therapy and wound rinsing showed gradual decrease of soft tissues inflammatory changes and complaints.

DISCUSSION

Digestion-associated swelling (also known as “mealtime syndrome”) in the submandibular region is a common disorder at the in- and out-patient oral and maxillofacial units. And typically, this is a manifestation of obstructive sialadenitis caused by sialoliths. Such complications of obstructive sialoliths as pus collection in the cellular spaces and fistulae are not common and its diagnostic features and management strategies are to be analyzed.

In a literature review we analyze all purulent extraoral complications’ manifestations (abscesses, phlegmons, sialo-cutaneous fistulae, and tender cutaneous nodules).

Table 1 is presenting our literature review of submandibular sialolithiasis complications and its management strategies based on the reviews of Ha et al (2020), Wakoh et al (2021).

Among all 24 published cases (Table 1) of submandibular sialolithiasis with extraoral complications in the majority of cases (n = 17) there were noted the cutaneous fistulous tracts (in 69.56 percent), collection of pus in cellular space – in 5 cases (in 21.74 percent), and tender cutaneous nodule – in 2 cases (in 8.7 percent).
FIGURE 1. Preoperative anterior view (A). Notes perspiration on the lower face, soft tissue swelling (arrow) in submental, left submandibular, and left neck region. Skin erythema visualized at the area of swelling and reached the level of left clavicle and suprasternal notch. (FIGURE 1 continued on next page.)
FIGURE 1 (continued). Preoperative 45 degree angled (B) and lateral view (C). An oblique 3.5-cm incision was planned and done inside the prominent upper neck skin crease (arrowhead).
FIGURE 2. Preoperative gray scale ultrasound shows hyperechoic semilunar structure (i.e., sialolith) (indicated by ‘+’ and ‘×’ calipers and arrow) with an artifact of acoustic shadowing behind (dot) and the collection of hypoechoic heterogenic content (pus, indicated by asterisk).

FIGURE 3. A cropped view of a 1.2-cm sialolith after its removal upon the phlegmon lancing. The sialolith was removed with a flow of pus upon the finger revision (i.e., exploration) of the purulent wound.
<table>
<thead>
<tr>
<th>#</th>
<th>Authors</th>
<th>Sex/Age (Yrs)</th>
<th>Salivary Gland</th>
<th>Extraoral Complication</th>
<th>Imaging</th>
<th>Surgical Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present case (treated in 2015, published in 2021)</td>
<td>M/47</td>
<td>Left submandibular</td>
<td>Submandibular and upper neck phlegmon</td>
<td>US</td>
<td>Transcutaneous removal of sialolith during the stage of finger examination of the purulent wound upon the phlegmon lancing</td>
</tr>
<tr>
<td>2</td>
<td>Wakoh et al (2021)</td>
<td>M/49</td>
<td>Ectopic right submandibular</td>
<td>Abscess with discharging sialo-cutaneous fistula in submandibular region</td>
<td>OPG, MSCT (non-contrast and contrast enhanced)</td>
<td>Abscess lancing and calcified mass removal</td>
</tr>
<tr>
<td>3</td>
<td>Bridwell et al (2020)</td>
<td>F/64</td>
<td>Right submandibular</td>
<td>Mouth floor purulent process in cellular spaces (abscess, according to authors)</td>
<td>MSCT</td>
<td>Ductotom y with removal of sialolith and drain placement</td>
</tr>
<tr>
<td>6</td>
<td>Kusunoki et al (2017)</td>
<td>M/72</td>
<td>Left submandibular</td>
<td>Poor left upper neck granuloma in a skin defect with a fistulous tract</td>
<td>MSCT</td>
<td>Sialadenectomy with sialolith removal and fistula excision</td>
</tr>
<tr>
<td>7</td>
<td>Ballal et al (2016)</td>
<td>M/80</td>
<td>Left submandibular</td>
<td>Cutaneous fistulous opening at the left neck</td>
<td>CT (No data it was CBCT or MSCT)</td>
<td>Excision of fistulous tract and submandibular gland with removal of calculus</td>
</tr>
<tr>
<td>8</td>
<td>Singh et al (2015)</td>
<td>M/53</td>
<td>Left submandibular</td>
<td>Fistulous opening in submandibular region</td>
<td>Contrast-enhanced MSCT, X-ray fistulogram</td>
<td>Excision of the fistulous tract and submandibular gland</td>
</tr>
<tr>
<td>10</td>
<td>Saha et al (2012)</td>
<td>M/54</td>
<td>Right submandibular</td>
<td>Cervical fistula</td>
<td>X-ray fistulography</td>
<td>Excision of the submandibular gland with the fistulous tract</td>
</tr>
<tr>
<td>11</td>
<td>Kishore Kumar et al (2012)</td>
<td>No data</td>
<td>Submandibular</td>
<td>Cutaneous sinus</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>#</td>
<td>Authors</td>
<td>Sex/Age (Yrs)</td>
<td>Salivary Gland</td>
<td>Extraoral Complication</td>
<td>Imaging</td>
<td>Surgical Management</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Almasri (2005)</td>
<td>M/70</td>
<td>Left submandibular</td>
<td>Discharging fistula in the left neck</td>
<td>MSCT, OPG</td>
<td>Excision of submandibular gland and the stone</td>
</tr>
<tr>
<td>15</td>
<td>Drage et al (2005)</td>
<td>F/45</td>
<td>Left submandibular</td>
<td>Sinus at the lower third of left neck</td>
<td>CT, fluoroscopy</td>
<td>Transcutaneous removal of the migrated stone from the superficial soft tissues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/73</td>
<td>Left submandibular</td>
<td>Discharging sinus in the middle third of left neck</td>
<td>Plain radiographs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/43</td>
<td>Submandibular</td>
<td>Tender cutaneous nodule</td>
<td>No data</td>
<td>Excision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/75</td>
<td>Submandibular</td>
<td>Tender cutaneous nodule</td>
<td>No data</td>
<td>Excision</td>
</tr>
<tr>
<td>20</td>
<td>Cartwright and Hardingham (1983)</td>
<td>F/79</td>
<td>Left submandibular</td>
<td>Left neck abscess</td>
<td>Plain X-ray of the neck</td>
<td>First management: Pus aspiration and prescription of ampicillin. Second management: At day 10 after aspiration – partial excision of the submandibular gland with a sialolith</td>
</tr>
</tbody>
</table>

US, ultrasound.
OPG, orthopantomography.
MSCT, multi-slice computed tomography.
CT, computed tomography.
X-ray, radiography.
MRI, magnetic resonance imaging.
Among 16 fistulous cases, in two cases both sialo-oral and sialocutaneous fistulae were noted from one calculus, and in one case – the fistula located in a tissues with a resolution of the submandibular abscess.

Among five abscess/phlegmon cases, the abscess with discharging fistula was noted in one case (Wakoh et al)⁷. Bridwell et al presented the description and computed tomography of an obstructed submandibular sialolith with abscess mimicking Ludwig’s angina.⁸

Henry Hoffman presented an adult patient with submandibular region abscess due to the submandibular gland sialolithiasis, obstruction disease, and acute infection.⁹ In the reported institution’s protocol, the step by step management strategy was perfectly highlighted with a purpose to be a helpful guidelines for other practitioners designed to bridge the gap between procedural concepts and their implementation.¹⁰

Among five calculus-associated abscesses presentations and descriptions in three cases (Cartwright and Hardingham, Hoffman, and Wakoh et al)¹¹,¹² a limited collection of pus was noted, and in two cases (Bridwell et al and our case) the purulent process was diffuse and localized in two or more anatomical regions.

Worth of attention is the classification proposed by the authors from Japan who classified all submandibular gland sialolith-associated fistulas into four types:

1. Sialo-oral fistula.¹³
2. Sialo-cutaneous fistula.¹⁴–¹⁶,¹⁷,¹⁸–²¹,²²
4. Sialo-oro-cutaneous fistula.²⁴–²⁶

Wakoh et al presented the case of cutaneous fistula related with ectopic submandibular gland sialolith.¹⁷ Ha et al (2020) exhibited a sialo-cutaneous fistula but with no evidence of submandibular gland sialolith. In their cases the diagnosis of submandibular sialadenitis was established and the conservative treatment helped to eliminate the symptoms.¹⁸

Cases with intraoral complications of submandibular sialolithiasis (like submandibular duct fistula, etc.) were excluded from this discussion and can be analyzed in further studies. Despite the fact that in the report of Chandak et al (2012) the case with diagnosis of acute submandibular sialadenitis complicated with abscess was established there was no radiological evidence of sialoliths in submandibular gland.²⁸

In the reported cases, some authors combined multiple diagnostic tools, like Jayachandran et al (X-ray, MSCT, MRI),²⁹ others used a single one, like Hoffman (MSCT).³⁰ Among 24 complication cases presented in the Table 1, computed tomography (non-contrast/contrast enhanced) was used in 10 cases, OPG – in three cases, X-ray – in five cases, X-ray fistulography – in three cases, fluoroscopy – in one case, US – in four cases, MRI – in one case, sialoendoscopy – in one case, and X-ray sialography – in one case. Thus, despite the fact that in the majority of cases (n = 10) the teams had chosen CT, ultrasonography (n = 4) has an undiscovered potential among surgeons.

US became a vital diagnostic tool for pathology detection in different glands – thyroid,³¹ lymphatic (ie, lymph nodes),³² and salivary ones³³. Katz et al are more than right pointing out that a clinical US is to be indicated as soon as the first symptoms of sialadenitis occur.³² US is more than useful in the detection of structural changes of the salivary gland parenchyma, vascularization, condition of the duct system, sialoliths³⁴ and even mucous plugs³¹. The authors note that approximately 20 to 40% of the salivary stones are not opaque on plain radiography, but most of these sialoliths are visible upon sialography.³³ 2.0-mm and longer sialoliths can be detected on gray scale US.³²

Practitioners must keep in mind the possible calcifications in the area of major salivary glands as potential mimickers of sialoliths. These can be: healed tuberculous lymphadenitis, phleboliths, tonsilloliths, segmental ossification of the stylohyoid ligament.³⁵ So, analysis of the anamnesis data, complaints and radiological features can significantly help in differential diagnostics.

In different countries, the purulent process presented in our case can be described by different terms. In English-speaking countries the term abscess³⁶ is usually used, and in some of East European countries (Ukraine, etc.) the term phlegmon can be used for the similar condition. In general, phlegmon is an acute, clearly not limited purulent inflammation of cellular tissue.³⁷ And abscess is a cavity filled with pus and delimited from the surrounding tissues by a pyogenic membrane.³⁸ In this particular case the

Table 1

<table>
<thead>
<tr>
<th>Case</th>
<th>US</th>
<th>CT</th>
<th>MRI</th>
<th>OPG</th>
<th>X-ray</th>
<th>Fluoroscopy</th>
<th>OPG Fistulography</th>
<th>Sialography</th>
<th>Sialoendoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAVCHUK & FESENKO
The term *phlegmon* was used to describe the spread of the purulent process up to two anatomical regions.

In general, based on our literature search, the transcutaneous removal of submandibular gland sialoliths was reported in 4 cases. And our case became the fifth one. More than rare case of cutaneous exfoliation of the submandibular gland sialolith was recorded by Karengera et al (1998).21 Very unusual two cases of the submandibular salivary stones migration in the cutaneous direction was described by Drage et al (2005).13 In 2021, Wakoh et al also highlighted the submandibular gland calculus migration to subcutaneous tissue.21 Calculi removal in those three cases7,13 was similar with our case in which the gland was preserved.

CONCLUSIONS

Ultrasound imaging is still underestimated and not enough popularized among head and neck and oral and maxillofacial surgeons. Presented case and published reports show the usefulness of this constantly developing diagnostic technique in a combination with knowledge of possible extraoral purulent complications’ and its management.

PATIENT CONSENT

The patient provided written consent for the use of his images.

AUTHOR CONTRIBUTIONS

Conceptualization: Fesenko II. Data acquisition: Savchuk LA. Data analysis, interpretation, and drafting of the manuscript: Fesenko II. Critical revision of the manuscript: Savchuk LA, Fesenko II. Approval of the final version of the manuscript: both authors.

ACKNOWLEDGEMENTS

We would like to thank Professor Henry T. Hoffman, MD, Iowa City, Iowa, United States for the kind support in preparing the manuscript.

REFERENCES (35)

12. Abe H, Kuroda K, Toma H, Takeyama K, Oka M.

SAVCHUK & FESENKO
AN INTEGRAL COMPONENT OF THE TREATMENT OF PAIN AND INFLAMMATION IN THE ORAL CAVITY IN 60 COUNTRIES WORLDWIDE!

- JAWS FRACTURES
- IMPLANTS PLACEMENT
- WOUNDS OF ORAL CAVITY

LOCAL ANESTHETIC AND ANTI-INFLAMMATORY EFFECT

SUMMARY OF PRODUCT CHARACTERISTICS
NAME OF THE MEDICINAL PRODUCT: Tantum Verde 0.15% mouthwash, QUALITATIVE AND QUANTITATIVE COMPOSITION. Each 100 ml contains: active ingredient: benzylamine hydrochloride 0.15 g (equivalent to 0.134 g of benzylamine). Therapeutic indications: Treatment of symptoms such as irritation/inflammation including those associated with pain in the oropharyngeal cavity (e.g. gingivitis, stomatitis and pharyngitis), including those resulting from conservative or extending dental therapy. Dosage and method of administration: Pour 15 ml of Tantum Verde mouthwash into the measuring cup, 1-3 times per day, using 5 ml of 1% concentration or diluted. If diluted, add 15 ml of water to the graduated cup. Do not exceed the recommended dosage. Contraindications: Hypersensitivity to benzylamine or to any of the excipients. PHARMACOLOGICAL PROPERTIES. Pharmacodynamic properties. Pharmacotherapeutic group: Antimicrobial drug; other agents for local oral treatments. ATC code: A01 AD01. Clinical studies demonstrate that benzylamine is effective in relieving some of the most common oral conditions. In addition, benzylamine possesses a moderate local anesthetic effect. Pharmacokinetic properties. Absorption. Absorption through the oropharyngeal mucosa is demonstrated by the presence of measurable quantities of benzylamine in human plasma. These levels are insufficient to produce systemic effects. Distribution. When applied locally, benzylamine has been shown to accumulate in inflamed tissue where it reaches effective concentrations because of its capacity to penetrate the epithelial barrier.

Information about medicines. Information for health care professionals for use in professional activities.

1. Инструкция для медицинского применения анестезирующего средства Тантум Верде®, разработанной для российского рынка, утверждена Национальным Министерством здравоохранения и социального развития РФ 07.11.2013.
5. Clinical and CT images are courtesy of Drs. Giovanni Pavanetti (Department of Oral & Maxillofacial Surgery, PHEI “Rizzoli” Medical University, Bologna, Italy) and Dr. Mustafar (SCIEEGE, Scientific Center of Dentistry & Ultrasound Surgery, Kyiv, Ukraine)